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This paper develops an algorithm for radial basis function (RBF) local node refinement and
implements it for vortex roll-up and transport on a sphere. A heuristic based on an electro-
static repulsion type principle is used to re-distribute the nodes, clustering in areas where
higher resolution is needed. It is then important to have a scheme that varies the shape of
the RBFs over the domain so as to counteract the effects of Runge phenomena where the
nodes are sparse. The roll-up of two diametrically opposed moving vortices are studied.
The performance differences between near-uniform and refined nodes are addressed in
terms of convergence, time stability, and computational cost. RBF results are put into
context by comparison with published results for methods such as finite volume and
discontinuous Galerkin.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Although applications of radial basis functions (RBFs) have bloomed in recent years, using RBFs to solve evolutionary par-
tial differential equations (PDEs) is a young research field. The strength of the method is in its ability to achieve spectral or
high-order accuracy for scattered node layouts while being able to node refine in areas where increased resolution is needed.
Although, this latter quality of local node refinement seems to naturally extend from the method being meshless and thus
being able to place the points where needed, few papers have addressed this issue and the numerical complications that
arise in doing so [6,14,16]. It is the aim of this paper to develop a meshless algorithm for RBF local node refinement on
the sphere.

Since physical phenomena in fluid dynamics often require variable resolution depending on the formation of flow fea-
tures, it would be advantageous to have a method that would naturally refine according to the physics. Currently used meth-
ods that allow for local mesh refinement, such as finite volume or elements, discontinuous Galerkin, and spectral elements,
are linked to underlying grids that introduce artificial boundaries necessary to perform the numerics. In contrast, since RBFs
are not linked to any surface-based coordinate system (i.e. grid or mesh), the placement of the nodes and how they are re-
fined will physically reflect the features of the flow (and not resemble boxes, triangles, etc.). However, one can not simply
‘clump’ where needed without taking into account the Runge phenomenon, ill-conditioning, and adverse effects on the
smoothness of the solution. The question then arises, ‘How does one node refine?’. Since even without boundaries these
issues arise, we will begin with defining a methodology for local node refinement in periodic domains, such as the surface
of a sphere.
. All rights reserved.
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An overview of the paper is as follows: Section 2 gives an introduction to RBFs via interpolation for constant and spatially
variable shape RBFs; Section 3 discusses node distributions and convergence of RBF interpolants on the sphere; Section 4
defines the local node refinement scheme; Section 5 discusses the conditioning of the RBF interpolation matrix for spatially
variable shape RBFs; Section 6 derives the discrete RBF advection operator; Sections 7 and 8 test the method on the roll-up of
two diametrically opposed moving vortices, which is a simple model for cyclogenesis in the atmosphere. In the first test, the
vortices are stationary as they roll-up; in the second test, they traverse the sphere at an arbitrary angle, combining linear
advection and deformational flow. The performance of the local node refinement method is analyzed both in terms of a con-
vergence and eigenvalue stability study with comparisons to other currently used methods in the literature, such as finite
volume and discontinuous Galerkin. Section 9 summarizes the paper with future prospects.

2. An introduction to RBFs via interpolation

A good way to introduce the RBF method for PDEs is through interpolation since at each time step (in an explicit scheme)
the exact spatial derivative operator is applied to the RBF interpolant to arrive at the derivative of the function at the node
points. An RBF interpolant approximates a set of scattered data, ffjgN

j¼1, sampled at some set of N distinct node locations,

x 2 Rd, by translates of a single radially symmetric function /ðrÞ, where r is the Euclidean distance between where the
RBF is centered, xj, and where it is evaluated x, i.e. r ¼ kx� xjk2 (in future notation we drop the subscript 2). Examples of
some RBFs are given in Fig. 1(a). Piecewise smooth RBFs feature a jump in some derivative at the location where they are
centered and thus can only lead to algebraic convergence. For instance, the radial cubic r3 has a jump in the third derivative
at xj, leading to fourth order convergence in 1-D, with the order of convergence increasing as the dimension increases (c.f.

[23]). On the other hand, infinitely smooth RBFs, such as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q
lead to spectral convergence of the interpolant as is

noted in [19,35]. As a result, we will be using them in this study. They also have a parameter e that controls the shape of
the RBF, which will play a crucial role in the node refinement scheme. The next two subsections contrast the differences
in the interpolation problem between keeping the shape parameter e fixed throughout the domain and spatially varying
it as will be needed for local node refinement throughout this study [6,32,14].

2.1. Constant e

Given the nodes fxjgN
j¼1 and corresponding scalar function values ffjgN

j¼1, the RBF interpolant sðxÞ to the data is defined by
sðxÞ ¼
XN

j¼1

cj/ðejx� xjjÞ; ð1Þ
where the expansion coefficients, fcjgN
j¼1, are found by enforcing the collocation conditions such that the residual is zero at

the data locations. This is equivalent to solving the symmetric linear system of equations, if the shape parameter, e, is kept
fixed. For example, setting e ¼ 1 for simplicity of notation,
/ðkx1 � x1kÞ /ðkx1 � x2kÞ � � � /ðkx1 � xNkÞ
/ðkx2 � x1kÞ /ðkx2 � x2kÞ � � � /ðkx2 � xNkÞ
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Fig. 1. (a) Commonly used RBFs. (b) The varying shape of an IQ RBF, centered at x ¼ 0, as a function of e.
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where A is known as the RBF interpolation matrix. The non-singularity of RBF interpolation matrices for any distinct scat-
tered node layout can be traced back to the theorems of Schoenberg [28,29]. For RBFs such as the Gaussians ðe�ðerÞ2 Þ, inverse

quadratics ð1=ð1þ ðerÞ2ÞÞ, and inverse multiquadrics 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q� �
, A is positive definite regardless of dimension and node

locations. For multiquadric RBFs ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q
Þ, A is conditionally positive definite and non-singularity of the matrix was not

proven until 1986 [20]. For complete details on the well-posedness of (2) see [4, Chapters 12–16]. In addition, studies have
shown that if the shape parameter, e, is kept fixed throughout the domain best results are achieved with roughly evenly dis-
tributed nodes [16]. Section 3 gives a brief description of the numerous ways to distribute nodes quasi-uniformly on a sphere
and the convergence rates for interpolation that are associated with such distributions. In general, for an in-depth study of
the analytical properties of RBFs for spatially fixed e, see [31,2,10,24].

With regard to the conditioning of the A matrix, the choice of e is crucial to the accuracy of the method. One can imme-
diately see from Fig. 1(b) that as e! 0, the translated RBFs become indistinguishable from one another, leading to ill-con-
ditioning of the A matrix. In fact, Fornberg and Zuev [14] show that the condition number of A asymptotically scales as
Oð1=ðe2

ffiffiffiffiffiffiffi
n�1
p
ÞÞ in the limit as e! 0 for both constant and variable e on the sphere (in the latter case e refers to a constant

by which the vector that contains the values of e across the domain are uniformly scaled by). As a result, there has been some
research with regard to the optimal choice of e based on a technique known as cross-validation that is implemented exten-
sively in the parameter optimization literature [5] and has been introduced to the RBF literature [26,3,7]. However, how to
optimally choose e, especially in the context of solving time-dependent PDEs (as is needed here) is still area of wide open
research. To date, none of the above mentioned studies consider the e! 0 limit (Fornberg and Piret [11] have developed
algorithms to bypass the ill-conditioning of A), where accuracy seems to greatly increase for solid body rotation on the
sphere, as is shown in [12]. However, Flyer and Wright [9], using the algorithm of [11], show that for the nonlinear shallow
water equations on the sphere, the accuracy degrades in this limit yet small e is beneficial. This phenomena is yet to be
understood. As to the authors’ knowledge, there are no studies that relate how to optimally choose e with respect to the
eigenvalue stability of the differentiation matrix, which depends on A.
2.2. Spatially variable e

In the case when e varies from one RBF center to the next over the spatial domain, the RBF interpolant is no longer an
expansion in terms of translates of a single basis function but of different basis functions. In other words, given the nodes
fxjgN

j¼1 and corresponding scalar data values ffjgN
j¼1, the RBF interpolant sðxÞ to the data is defined by sðxÞ ¼PN

j¼1aj/jðejkx� xjkÞ, where fajgN
j¼1 is again determined by enforcing that the residual is zero at the collocation nodes.

However, now the basis functions /j are distinctly different from one another, varying in shape according to ej. This lead
to a more linearly independent basis and thus better conditioning of the interpolation matrix A, as will be demonstrated
in Section 5.

For spatially variable e , theory severely lags the small amount of numerical results there are in the literature
[18,6,32,14,27] with regard to accuracy and convergence and none to speak of with respect to the time stability of
the RBF method. The standard proofs for non-singularity of the RBF interpolation matrix A no longer apply and those theo-
retical results that do exist, such as [1], depend on small perturbations to the A matrix that do not apply in this study. One of
the main reasons for the lack in theory is that once e varies, the A matrix is no longer symmetric and loses its structure.
However, when clustering nodes, e needs to vary in order to suppress Runge phenomenon [14] and will be discussed in
Section 4.

Without its structure, the A matrix can no longer be guaranteed non-singular. However, Fornberg and Zuev [14] (Figs. 5.2
and 5.3) show that no matter what the node layout is or how e is varied across the domain, the eigenvalues decay in an
exceptionally regular pattern with respect to small e (recalling that here e refers to a constant by which the vector that con-
tains the values of e across the domain are uniformly scaled by). If the singularity of the A matrix were that sensitive to spa-
tially varying e, then we would not expect to see such regular distinct patterns. The locally clustered node sets demonstrated
in this study result in a spatially variable e of roughly Oð1Þ and only vary the condition number of A by at most two orders of
magnitude, as will be shown in Section 5.

In the next section, we define the mesh norm that is often used to prove the given error bound for interpolation on the
sphere for quasi-uniform nodes with constant e. Although we are clustering nodes, we start our refinement algorithms with
the node sets for which these bounds are valid. Although technically not applicable to the refined node set or the RBF meth-
od-of-lines approximation, we do see similar error bounds in our numerical studies with respect to achieving spectral con-
vergence as is noted in Sections 7 and 8.
3. Distributing nodes on a sphere and convergence of RBF interpolants

When using a meshless method such as the RBF method, the difficult task of creating a grid or mesh on an arbitrary do-
main is replaced by a simpler task of scattering nodes. Both near-uniform nodes and nodes clustered to reflect the physics of
the problem are considered here.
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3.1. Nearly uniform node distributions

For the surface of the sphere ðS2Þ there is no evenly distributed node set with more than 20 points. However, there are
many different ways of creating near-uniform node distribution. Examples include distribution according to the golden ratio,
equal partitioned area, convex hull approaches, Voronoi cells, etc. [30].

Near-uniform node sets can also be created by numerical optimization of various objective functions. Numerous node sets
for the surface of the sphere are available online [34,30]. For the numerical results in the following sections, these types are
chosen:

Minimum Energy (ME) nodes: ME nodes correspond to the minimum of the potential energy for electrostatic repulsion
of point charges scattered on the surface of the sphere, hence the name.
Maximum Determinant (MD) nodes: These nodes can be attained by maximizing the determinant of the spherical har-
monic interpolation matrix [33].

Since there is essentially no difference in the results between the two node sets (as seen in Table 2), ME nodes were used
in discussions. A plot of these node sets with 1849 nodes is shown in Fig. 2. Note that the MD nodes have a more irregular
layout than the ME nodes, which exhibit an almost hexagonal pattern.

Assuming fxjgN
j¼1 are N nodes on the unit sphere, both ME and MD node distributions provide a quasi-uniform distribution

on the sphere. ME node set maximizes the minimum distance between nodes according to the measure
h ¼max
x2S2

min
16i6N

distðx; xiÞ; ð3Þ
where dist is the geodesic distance from x to xi. This quantity is referred to as the mesh norm [34,17] and, geometrically, it
represents the radius of the largest cap that covers the area between any subset of nodes on the sphere. The ME node sets
have the property that h decays approximately uniformly like the inverse of the square root of the number of nodes N, i.e.
h � 1ffiffiffiffi
N
p :
Thus, they are similar to a uniform discretization of the unit square.
The mesh norm is also of practical importance since it appears in many proofs of error bounds for RBF interpolation on the

sphere (e.g. [17,15]). Indeed, in the context of infinitely smooth RBFs, it is shown in [17] that, provided the underlying func-
tion being interpolated is sufficiently smooth, RBF interpolants converge (in the L1 norm) like h�1=2e�c=4h, i.e. at an exponen-
tial rate, for some constant c > 0 that depends on the RBF. For the ME node sets, convergence will thus proceed like
N1=4e�c

ffiffiffi
N
p

=4. In the experiments that follow we will demonstrate that this error bound seems to also hold for the RBF meth-
od-of-lines approximation of the two test cases.
4. Local node refinement scheme

When refining nodes, various criteria can be used. For instance, nodes can be refined in a region where an error measure is
the largest or where the gradient of a quantity such as the magnitude of velocity or vorticity is greatest. In either case, nodes
can not simply be clustered together in an arbitrary manner. The transition from sparse nodes to where the clustering occurs
in the domain must be smooth. If there is an abrupt change in node density, then as a feature in the flow advects over the
nodes, wave dispersion will occur due to an abrupt change in the wavelengths that can be supported. As a result, we will first
look at ways to smoothly cluster the nodes. Secondly, decreasing the node density in one area of the domain can cause Runge
phenomena to occur since there are not enough nodes to properly ‘‘pin down” the solution there [14]. Thus, to counteract
Fig. 2. Near-uniform node sets with N ¼ 1849 nodes. Displayed are the nodes on the northern hemisphere.
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this, the shape of the RBFs need to vary over the domain. We will implement a heuristic that was discussed for 1-D inter-
polation in [14].

4.1. Heuristic for smooth node clustering

The node refinement scheme should reflect the physics of the PDE(s), as mentioned above. The question then becomes
how to refine in order to achieve a smooth node distribution. A quite simple way that has proven to be effective in our stud-
ies is to simulate electrostatic repulsion on the surface of the sphere to a low order (so that it is computationally cheap yet
achieves the purpose). If every node is assigned the same charge in a random distribution, then the result of our code will be
a roughly approximate ME node set. However, by applying different charges to the nodes through a charge distribution func-
tion, the node density over the domain will vary. We let nodes move until force equilibrium is reached with respect to a set
tolerance, such as kDxk1 < 10�4 (Dx is defined as max16j6Nkxnew

j � xold
j k

2
2, where we have distinguished between the new and

old positions of the nodes in the iterative algorithm). Where the nodes have high charges, the node density will be low and
vice versa. With this method, the node set will also have smooth transitions between areas of different node densities.

In our test cases, the analytical solution is known so that we can do an exact error study. As a result, the angular velocity
at which the vortices roll-up is known (albeit, this is usually not the case – yet, it provides a good example of how to do node
refinement with RBFs). Since the vortex will form fine features, requiring high resolution, where the angular wind velocity is
high, it is sensible to use this velocity to assign charges for the generation of the node set. Other charge distributions for node
refinement, such as a Gaussian charge distribution, were evaluated but did not perform as well in comparison. The angular
wind velocity for vortices centered at the poles is given by
xðhÞ ¼ v0
3
ffiffi
3
p

2q sech2ðqÞ tanhðqÞ if q – 0;

0 if q ¼ 0;

(
ð4Þ
where h is the latitude and q ¼ q0 cos h with q0 ¼ 3. For each test, xðhÞ is scaled differently in order to correspond to the
literature. For the stationary case, v0 ¼ 1 and for the translating vortex test case v0 ¼ 2p=12 (however, for the repel algo-
rithm v0 ¼ 2p=12). In order to achieve a high node density where the angular velocity is high, the charge distribution for
the electrostatic simulation was given by
qðhÞ ¼ 1
0:1þ c �xðhÞ ; ð5Þ
where c is a parameter that controls the amount of node clustering in the polar regions. The small constant with value 0.1 in
the denominator was added to avoid the singularities at h ¼ � p

2 ;
p
2. Node distributions obtained for a few values of this

parameter are shown in Fig. 3. In Fig. 4, a node set of 900 nodes with parameter value c ¼ 10 is plotted together with the
known analytic solution of the first test case, the roll-up of a stationary vortex, at time t ¼ 6.

4.2. Heuristic for varying e

When clustering nodes, the shape parameter of the RBF must vary across the domain in order to avoid Runge phenomena
in areas more sparsely populated by nodes, as mentioned above. This oscillatory error phenomenon, commonly associated
with high-order polynomial interpolation on uniform grids, was studied in relation to RBF interpolation by Fornberg and
Zuev [14]. For a 1-D interpolation problem, they showed that scaling e according to the inverse of the Euclidean (‘2 norm)
distance to the nearest neighbor node gives nearly optimal results with respect to the interpolation error. This rule was used
throughout this study with excellent results obtained. The nearest neighbor rule for an RBF /j centered at ðkj; hjÞ was imple-
mented by letting
ej ¼ emin

max
j

dj;min

dj;min

0
@

1
A; ð6Þ
where dj;min is the Euclidean distance between the node ðkj; hjÞ and its closest neighbor node and emin is a scaling parameter.
For the refined node sets acquired from the electrostatic repulsion, the shape parameter will roughly range from emin to
10emin and the optimal value for the scaling parameter was typically emin � Oð1Þ. Shown in Fig. 5 is a comparison between
the angular velocity and the shape parameter, showing how the value of e varies according to the nodal density, which in
turn relates to the angular velocity through the node refinement strategy. The charge distribution fqðhjÞgN

j¼1 that we place
on the nodes determines the final separation between the nodes fxgN

j¼1 and fejgN
j¼1 is defined in terms of the inverse of those

distances. Therefore, ej becomes proportional to 1=qðhjÞ.

5. The conditioning of the interpolation matrix A for spatially variable e

Since the differentiation matrices depend on inverting A (as will be shown in the next section), we investigate how the
conditioning of A varies with both the clustering c and the number of nodes, N, for both ME nodes and refined nodes (i.e.



Fig. 3. Refined node sets of 1849 nodes obtained from electrostatic repulsion for different values of the parameter c with the charge distribution in (5).
Nodes in northern hemisphere shown.

Fig. 4. The analytic solution to the stationary vortex test case at time t ¼ 6 displayed for the northern hemisphere. Dots represents the node locations for a
refined node set of 900 nodes. The value c ¼ 10 was used.

Fig. 5. A comparison of the angular velocity and the value of the shape parameter according to the nearest neighbor rule.
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Fig. 6. The condition number of the RBF interpolation matrix A as a function of (a) the clustering of the nodes, c; dotted line indicates ME node set; and (b)
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spatially variable e). Fig. 6(a) shows that the conditioning of the A gets better as we cluster the nodes, that is for values away
from small c. This behavior is expected since the basis functions become more linearly independent, i.e. they look different
from one another and are no longer translates of an identical function. On the other end of the figure, as c becomes large,
many of the nodes are located in the clustered region, resulting in a set of basis functions that are highly peaked and do
no not vary as widely across the domain. Thus, the conditioning of the A matrix is barely improved. The condition number
of A for the ME node set is shown by the dotted line in Fig. 6(a) and is approximately two orders of magnitude larger than for
the refined node sets used in the paper. Fig. 6(b) shows that the condition number of A for the ME node set grows much more
rapidly as function of the number of nodes N than the refined(clustered) node set. Normally, larger N is detrimental for ill-
conditioning. However, where the nodes are denser e is made larger, which is better for conditioning. These two effects offset
each other such that the result in Fig. 6(b) is observed. That is, from N ¼ 400 to N ¼ 4096, the condition only grows by
approximately two orders of magnitude.

6. Deriving the RBF discrete advection operator

Let x ¼ fx; y; zg and xk ¼ fxk; yk; zkgN
k¼1 be points on the unit sphere. Then the Euclidean distance from x to xk is
rðxÞ ¼ kx� xkk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� ykÞ

2 þ ðz� zkÞ2
q

ð7Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos h cos hk cosðk� kkÞ � sin h sin hkÞ

q
; ð8Þ
where h and k represent latitude and longitude, respectively. It is important to note that the distances are not great circle arcs
measured along the surface but are the Euclidean distance measured straight through the sphere. The reason being is that
RBFs do not ‘‘feel” the geometry of the domain in which they are applied nor the dimension, only the scalar distances be-
tween the nodes and the locations at which the RBF are centered.

For a RBF /k ¼ /ðekkx� xkgÞ centered at xk with shape parameter ek, the partial derivatives with respect to k and h can
obtained by using the chain rule and are given by
@/k

@k
¼ cos h cos hk sinðk� kkÞ

1
r
@/k

@r

� �
; ð9Þ

@/k

@h
¼ ðsin h cos hk cosðk� kkÞ � cos h sin hkÞ

1
r
@/k

@r

� �
: ð10Þ
Applying the partial derivative with respect to k to the RBF interpolant in (1) of the geopotential height field h and evaluating
at the nodes gives
1
cos h

@h
@k

� �����
fhj ;kjgN

j¼1

¼
XN

k¼1

ck cos hk sinðkj � kkÞ
1
r

d/k

dr

� �����
fhj ;kjgN

j¼1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bk

j;k

¼
XN

k¼1

ckBk
j;k; j ¼ 1; . . . ;N

Dk~h ¼ ðBkA�1Þ~h;

ð11Þ
where we have used the fact that c ¼ A�1h. Dh is derived in the same manner. Note that the singularities in the spherical
coordinate system are no longer present in the RBF formulation. The advection equation for the geopotential height field,
which is the core of our test cases, can be written in semi-discrete form as
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@~h
@t
þ Uða; h; k; tÞDk~hþ Vða; h; k; tÞDh~h ¼ 0; ð12Þ
where~h is the height field sampled at the nodes fhj; kjgN
j¼1. The diagonal matrices U and V correspond to the time-dependent

wind vectors also sampled at fhj; kjgN
j¼1 and a is the degree of rotation of the wind field with respect to the polar axis. The

classical fourth order Runge–Kutta (RK4) scheme was used to advance the PDE in time with the inverse multiquadric

RBF, 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðerÞ2

q
, being used.

7. Numerical test case 1: stationary vortex roll-up

In this test case, vortices form at the north and south pole of a coordinate system rotated an angle a with respect to the
original polar axis. Being a test of deformational flow with increasingly stronger gradients over time, it is a simple model for
the observed evolution of cold and warm frontal zones (for complete details on the test case see [22]). However, since node
layouts do not lie along any directional lines or vertices, as seen in Fig. 2, the position of the north pole is completely arbi-
trary. Thus, the PDE can be immediately implemented in a rotated ðk0; h0Þ system without needing to do any transformations,
where ðk0; h0Þ is given by
k0j ¼ arctan
sinðkj � kpÞ

sin kp cosðkj � kpÞ � cos hp tan hj

� �
;

h0j ¼ arcsin sin hj sin hp þ cos h cos hp cosðkj � kpÞ
� �
with ðhp; kpÞ being the north pole of the rotated coordinate system. In this rotated coordinate system, the wind velocities are
u0 ¼ xðh0Þ cos h0; ð13Þ
v 0 ¼ 0; ð14Þ
where x is given in (4) with the advection equation (12) reducing to
@~h
@t
þ Uðh0ÞDk0~h ¼ 0: ð15Þ
The analytic solution at time t is given by
hðk0; h0; tÞ ¼ 1� tanh
q
c

sinðk0 �xðh0ÞtÞ
� �

: ð16Þ
c controls the steepness of the solution and is chosen to be 5. The total simulation time was chosen to be t ¼ 3 for compar-
ison with results in the literature. The analytic solution (although there is absolutely no difference to the eye with regard to
the numerical solution) at various times is given in Fig. 7

As the stationary vortex test case was implemented with the RBF method by Flyer and Wright [8], only a short section is
devoted to this test case, with the main focus on a comparison of the error between near-uniform nodes and refined nodes.
For the moving vortex test case, stability issues and other aspects of the numerical results are discussed in some detail.

7.1. Numerical results: near-uniform nodes versus refined nodes

Since it would be costly to optimize the parameter c in Eq. (5) to achieve the lowest possible error, a number of runs were
performed and a comparison of the error for a few different values of this parameter is given in Fig. 8. As the difference be-
tween the node sets at the optimal value of emin is rather small, no further optimization was attempted and the following
numerical results for this test case were achieved with c ¼ 3. In cases where the analytical solution is not explicitly known,
Fig. 7. The analytical solution at different times t to the stationary vortex test case as viewed from the north pole.
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a measure of the flow, such as the gradient of the vorticity, would need to be calculated and then the minimum wavelength
scales that need to be resolved could be determined. From the fact that spectral methods need about two nodes to resolve a
wavelength, the amount clustering could be estimated.

In [8], results for this test with ME nodes were given. To achieve a comparable error estimate when using node refine-
ment, the solution for the refined case is interpolated to a 6400 ME node set and measured against the analytical solution
at these points. In both ME and refined cases, we would expect the error to grow in time. This is true even in the latter case
since we are not adaptively refining, that is adding more nodes in order to resolve the finer features of the solution as they
appear. However, the growth rate of the error for the refined case should be smaller as we have higher resolution in areas
where it is needed. This is indeed the case as seen in Fig. 9. At the end of the run, Fig. 10 shows the magnitude of the error in
the numerical solution with and without node refinement (clustering) for N ¼ 3136. With node refinement, not only have we
gained a factor of 15 in accuracy but no longer does the error occur in the center of the vortex (as is the case in Fig. 10(a)) but
in the outer regions where the gradients in the solution are much softer and thus the node density is sparser.

As shown in Table 1, the node refinement improves the accuracy by approximately one to two orders of magnitude in the
‘1 norm, a factor of 20–30 in ‘2, and an order of magnitude in the ‘1 norm. For a given number of nodes, the time step for
refined nodes is smaller due to the more restrictive local CFL condition. In all cases, it has decreased by roughly a factor of 3.
Since the node spacing for near-uniform nodes is proportional to 1ffiffiffi

N
p , the error should decay as Oðe�

ffiffiffi
N
p
Þ to achieve spectral

accuracy. This might not be so evident by looking at the numbers in Table 1, so we plot the ‘2 error as a function of
ffiffiffiffi
N
p

in Fig. 11 for both the ME and refined cases.
When doing refinement with any type of numerical method, one expects a reduction in computational cost for a given

accuracy. RBFs are no exception. For example, to achieve an ‘2 error of about 1 � 10�5, 4096 nodes are needed in the near-
uniform case compared to 1849 nodes with node refinement. At OðN2Þ arithmetic operations per time step, this results in
computational savings by a factor of 5. Furthermore, the memory cost per full matrix is also reduced by a factor of 5.
8. Numerical test 2: translating vortex roll-up

For this test case, the vortices move along the equator of the rotated coordinate system as they form. It is a simple cyclo-
genesis model for any type of moving vortex roll-up in atmospheric dynamics, such as hurricanes and tropical cyclones (for
complete details on the test case see [21]). The wind field is a combination of linear advection and the stationary vortex wind
1 2 3 4 5 6 7 8 9 10
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Fig. 8. (a) The normalized ‘2 error as a function of emin for different values of the parameter c at time t ¼ 3 and N ¼ 1849; (b) the error for the optimal emin is
plotted as a function of the parameter c at time t ¼ 3 and N ¼ 1849.
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Fig. 9. Time traces of the normalized error for the stationary vortex test case using N ¼ 3136 nodes.



Table 1
Comparison of the error for different node distributions for the stationary vortex test case. For the refined node sets, e refers to emin.

Node set N e Dt Normalized error

‘1 ‘2 ‘1

Refined 900 2.5 1/6 9:2 � 10�5 1:8 � 10�4 9:0 � 10�4

1296 1/8 3:4 � 10�5 6:4 � 10�5 5:0 � 10�4

1849 1/8 9:3 � 10�6 1:6 � 10�5 7:8 � 10�5

2500 1/10 3:3 � 10�6 6:0 � 10�6 3:7 � 10�5

3136 1/12 1:3 � 10�6 2:4 � 10�6 1:7 � 10�5

4096 1/16 5:1 � 10�7 8:9 � 10�7 5:8 � 10�6

ME 900 3 1/2 1:3 � 10�3 4:7 � 10�3 4:7 � 10�2

1296 1/2 5:8 � 10�4 1:8 � 10�3 1:7 � 10�2

1849 1/4 1:6 � 10�4 6:0 � 10�4 1:0 � 10�2

2500 1/4 4:8 � 10�5 1:7 � 10�4 1:9 � 10�3

3136 1/6 1:5 � 10�5 5:2 � 10�5 6:9 � 10�4

4096 1/6 5:3 � 10�6 1:7 � 10�5 1:7 � 10�4

Fig. 10. The magnitude of the error at t = 3 for (a) ME nodes and (b) refined (clustered) nodes for N ¼ 3136. Notice that the scales are different on the two
figures, with the maximum absolute error being approximately 8 � ð10�4Þ for (a) and 1:5 � ð10�5Þ for (b).
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Fig. 11. The normalized ‘2 error as a function of
ffiffiffiffi
N
p

for both ME and refined node distributions for the stationary test case.
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given in (13) and (14). As the vortex wind velocity depends on the position of the vortex centers, the wind field will be time-
dependent.

Again, since the RBF method is independent of which coordinate system the PDE is expressed in, it is beneficial to imple-
ment the PDE in the rotated system and all the following equations are given in this coordinate system. The time-indepen-
dent linear advection wind is given by



−180−90090180−90−450459051015

x 10−6

−180−90090180−90−4504590
u0s ¼ u0 cos h0; ð17Þ
v 0s ¼ 0; ð18Þ
where u0 is the rotation rate given by 2pa=T with a ¼ 1 (the radius of the sphere) and T ¼ 12 (the total time to complete one
revolution of the transported scalar). The calculations are carried out in non-dimensional units. However, when presenting
the final results, we re-introduce time units only for the purpose of simplifying direct comparisons against other results in
the literature, so that T ¼ 12 corresponds to 12 days. If ðk0c; h

0
cÞ denotes the time-dependent vortex center in the rotated coor-

dinate system, then ðk0cðtÞ; h
0
cðtÞÞ ¼ ðk

0
0 þ u0t; h00Þ. With the initial vortex position ðk00; h

0
0Þ ¼ ðp=2;0Þ, the time-dependent wind

velocities are given by
u0rðtÞ ¼ �xðh0Þ cosðk0 � k0cðtÞÞ sin h0; ð19Þ
v 0rðtÞ ¼ xðh0Þ sinðk0 � k0cðtÞÞ; ð20Þ
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where xðh0Þ is obtained by rotating the coordinate system to the vortex center and then applying (4). This gives the total
wind field
u0ðtÞ ¼ u0s þ u0rðtÞ; ð21Þ
v 0ðtÞ ¼ v 0s þ v 0rðtÞ: ð22Þ
For the moving vortex test case, the analytic solution is given by (16) as for the stationary case. Since the vortices are no
longer stationary, a series of rotations must be performed to calculate the analytic solution at a given point. For a point with
coordinates ðk0; h0Þ in the rotated coordinate system, the analytic solution is obtained by first rotating the coordinate system
to a position ðk0s; h

0
sÞ ¼ ðk

0 � u0t; h0Þ, then determining the corresponding coordinates in the regular spherical coordinate sys-
tem ðks; hsÞ and finally applying a rotation such that the north pole of this system is at the current vortex center ðkc; hcÞ.

When applying node refinement, the node set must also rotate as the vortices translate across the sphere. This does not
affect the differentiation matrices, but the solution must be interpolated to the new node locations at every rotation of the
node set. The total computational cost ofOðN2Þ operations per time step is still the same. For the numerical results presented
here, the node set was rotated at every time step. RK4 was used to advance the system in time with inverse quadratic RBFs,
1=ð1þ ðerÞ2Þ, being used simply for variety. To compare with results in the literature, this case was run to t ¼ 12. As a result,
a value of c ¼ 10 was used for the refinement in order to capture sharp gradients that occurred in the solution at later times.

Shown in Fig. 12 is a contour plot of the solution and the magnitude of the error at different times with a refined node set
of 3136 nodes.
8.1. Convergence study

Due to a smooth solution for all time, we expect the RBF method to be spectrally accurate, i.e. the error should decrease
exponentially with decreasing node spacing. Shown in Fig. 13 is a plot of the normalized ‘2 error as a function of

ffiffiffiffi
N
p

. In this
log-linear plot, the RBF method with ME nodes appears to be converging as expected. The refined node set improves the
accuracy by a factor of 20 in accuracy whilst giving the same convergence rate.
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Fig. 13. The normalized ‘2 error as a function of
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at time t ¼ 12 days for the moving vortex test case.
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Time traces of the error are shown in Fig. 14. Since c ¼ 10 here (Fig. 3(c)), we will have a more restrictive CFL condition
than in the previous test case. As a result, the time step of Dt ¼ 18 minutes was chosen in order that spatial errors dominate.
Refining the nodes gains roughly a factor of 20 in accuracy throughout the simulation in all norms reported.

To show an extreme case of vortex roll-up, we run the simulation for 24 days. Fig. 15 shows the solution and the mag-
nitude of the error at time t ¼ 24 days with a refined node set of N ¼ 3136 nodes. Even after this long time integration and
with the solution displaying extremely fine features, the ‘1 error is still on the order of 10�2. Also, note that there is little to
no dispersion in the solution as seen by Fig. 15(b).

8.2. Time stability study

Classic eigenvalue stability analysis does not theoretically apply to these non-normal differentiation matrices and the
time-dependent wind velocities add further complication to the stability assessment. In practice however, the magnitude
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of the largest eigenvalue does not change over time and the eigenvalue spectrum gives a very good indication on the time
step necessary to obtain stability. Fig. 16 shows the eigenvalues of the full differentiation matrix at time t ¼ 12 days together
with the stability region for RK4. For any hyperbolic problem, the absolute ideal situation is that the eigenvalues of the dis-
cretized spatial operator lie on the imaginary axis. As seen, the eigenvalues lie tightly clustered along the imaginary axis.
While the eigenvalues with positive real parts correspond to growing eigenmodes, this appears to be of little practical con-
cern as the method is stable for very long time integrations as was seen in Fig. 15.

The error versus the time step is shown in Fig. 17 and the results are in agreement with the eigenvalues shown in Fig. 16.
Note that although a time step of Dt ¼ 45 minutes is stable with the refined node set, temporal errors will dominate for time
steps larger than Dt ¼ 20 min, the location in the figure where the refined error begins to grow.
8.3. Comparative results

As this is a recent test case, the only results found in the literature are presented in [21,25] and displayed in Table 2. In
[21], finite volume (FV) on a latitude–longitude grid (lat–lon) was run also with adaptive mesh refinement (AMR), the base
level being N ¼ 2592ð5� � 5�Þ with three adaptive refinement levels. Each method uses a different grid structure with the
discontinuous Galerkin (DG) having been run sub-optimally with respect to the CFL limit (personal communication with
Ram Nair). In general, the RBF method with near-uniform nodes, as given by both ME and MD node sets, achieves a compa-
Fig. 17. The normalized ‘2 error as a function of the time step.

Table 2
Results using RBF, DG, and FV for the moving vortex test case run for 12 days. The FV AMR has a base level of 5� � 5� , corresponding to N ¼ 2592 if a point is
centered in each control volume.

Method N Dt (min) Normalized error

‘1 ‘2

RBF, refined 900 60 4:0 � 10�3 5:4 � 10�3

1849 30 2:6 � 10�4 3:9 � 10�4

3136 18 4:6 � 10�5 7:2 � 10�5

RBF, ME 900 180 1:6 � 10�2 2:8 � 10�2

1849 120 6:5 � 10�3 1:5 � 10�2

3136 60 2:0 � 10�3 4:1 � 10�3

RBF, MD 900 180 1:6 � 10�2 3:1 � 10�2

1849 120 6:9 � 10�3 1:5 � 10�2

3136 60 2:9 � 10�3 4:7 � 10�3

DG 9600 6 2:1 � 10�3 7:1 � 10�3

FV (lat–lon) AMR (2592-base, 3 levels) Variable 1:4 � 10�3 2:2 � 10�3

165,888 ð0:625� � 0:625�Þ 10 5 � 10�4 2:0 � 10�3

FV (cubed sphere) 38,400 30 5 � 10�3 2 � 10�3
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rable accuracy with FV, both on a cubed sphere and latitude–longitude grid, and with DG methods but with lower N and
larger time steps on the order of hours. When adopting node refinement, the RBF method is more accurate to any previously
reported result, with the ‘1 and ‘2 errors on the order of 10�5.
8.4. Performance benchmarks

To assess the performance of the implementation, a number of runs were performed and the runtime was measured. See
Figs. 18 and 19 for a comparison of runtime between refined nodes and ME nodes. In Fig. 18 the runtime per time step is
shown and it appears to grow quadratically with the number of nodes. Since the RBF method requires OðN2Þ operations
per time step, this result is expected. When using refined nodes, the computational cost is just slightly higher since an extra
matrix–vector multiply is needed to interpolate the solution to the new rotated node locations at each time step. Basically,
for almost the same computational cost we have a vast increase in accuracy.

The total runtime as a function of the normalized ‘2 error is plotted in Fig. 19. This figure shows the large benefits of using
node refinement. Reaching an ‘2 error of 4 � 10�3 requires a runtime of about 12 s with refined nodes compared to 3 min with
near-uniform nodes. Another important performance aspect is memory usage, which due to the full differentiation matrices
grows rapidly with increasing number of nodes. The largest ME node set used, with N ¼ 3136 nodes, gives an ‘2 error of
4 � 10�3. In comparison, less than 1000 refined nodes are needed to achieve a comparable error, which corresponds to a
reduction of the memory cost for each full matrix by a factor of 6. The lowest error reached with refined nodes is also almost
two orders of magnitude lower than for the largest ME node set.

The performance was measured running MATLAB version 7.1 on a laptop with a 1.83 GHz dual-core processor and 2 GB of
memory available. This version of MATLAB does not use multi-threading. Thus, only one processor core is used.
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Fig. 18. The runtime per time step as a function of the number of nodes.

10−5 10−4 10−3 10−2 10−1
0.1

1

10

Fig. 19. The total runtime as a function of the normalized ‘2 error at 12 days.
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9. Conclusion

A heuristic was developed for performing local node refinement with RBFs by: (1) running an ‘‘electrostatic repulsion”
type algorithm where the charge density distribution for the nodes was (a) smooth and (b) reflected some physical property
of the problem; and (2) the shape parameter of the RBFs was varied across the domain according to the inverse of the Euclid-
ean ð‘2Þ distance to the nearest neighbor node. Two test cases were addressed, stationary and moving vortex roll-up. In the
former case, node refinement increased the accuracy by as much as two orders of magnitude and for the latter case by a fac-
tor of 20. It had been known from previous studies [8,9] that RBFs can take unusually long time steps for hyperbolic prob-
lems due to the nature of the eigenvalue spectrum of the discretized spatial operator. It was shown here that this property
also holds when local node refinement was implemented, although, due to the clustering of nodes leading to a more restric-
tive CFL condition, the time steps are shorter in comparison. Furthermore, as would be expected of any refinement scheme
for a numerical method, there was a large savings in computational cost and memory. For the same error the refined scheme
was 15 times faster with a 6 times reduction in memory cost.

The algorithm presented here can easily be used for adaptive node refinement. However, since the differentiation matrices
would need to be recalculated every time the node distribution is re-arranged (most likely every couple of time steps) a more
cost effective scheme would be highly desirable. Using the refinement algorithm presented in this paper, the authors are cur-
rently exploring faster methods to calculate differentiation matrices such as localized RBF stencils [13] and iterative methods.
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